Abstract
Low-rate dynamic contact angles of 30 liquids on a FC-725-coated wafer surface were measured by an automated axisymmetric drop shape analysis-profile (ADSA-P). Surprisingly, results indicate that FC-725 behaves differently in some respects from what one would expect for non-polar surfaces: only nine liquids yield essentially constant contact angles whereas the others show slip/stick contact angle behaviour. In the worst case, the contact angle increases from ca 50 to 160° at essentially constant three-phase contact radius. These angles should be disregarded for the interpretation in terms of surface energetics since there is no guarantee that Young's equation is applicable. If one employs a conventional goniometer-sessile drop technique, such contact angle behaviour cannot be easily seen in all cases. These results indicate that the claim from van Oss et al. [Langmuir 4 (1988) 884] that liquids with the same contact angles do not have the same surface tensions is misleading. If the meaningful contact angles are plotted as the liquid–vapour surface tension times cosine of the contact angle versus the liquid–vapour surface tension, that is, γ lv cos θ versus γ lv, a smooth curve emerges. Thus, intermolecular forces (or surface tension components) do not have an additional and independent effect on the contact angles, in good agreement with the results from other studies on non-polar and polar polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.