Abstract

This paper shows that the high-frequency eddy-current (HFEC) measurement devices can be used not only for characterizing conductivity and magnetic permeability related properties of electrically conductive materials, but also for permittivity characterization of insulators. Maxwell's equations, finite-element method simulations, and experimental research are applied to support this hypothesis. An industrial HFEC device is used to measure the change of dielectric properties during the curing process of the epoxy resin L20. The measurement results are in good agreement with the expected behavior of the parameters relative permittivity and tan δ during cure. Using a capacitive reference device, similar characteristics regarding the change of the complex permittivity of the resin can be observed. In addition, HFEC imaging results on polymethyl methacrylate are presented, discussed, and compared with capacitive imaging. HFEC permittivity mapping benefits from a high spatial resolution with a sensitivity and penetration depth that is at least comparable with those of capacitive imaging technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.