Abstract

After the 2008 Wenchuan earthquake, mountainous areas in SW China are recognized as a region with highly active and perilous landslides and debris flows. The frequent impacts of debris flow are a major threat to bridge piers located in debris flow gullies. It is an important issue for guaranteeing the safety of railway bridges in areas prone to hazardous debris flows. Previous research has achieved significant results characterizing the initiation and mechanisms for debris flow, and their interactions with some structures. However, there has been little research on the dynamic pressure of debris flow on bridge pier caused by different debris flows. In this study, the measurement and estimation of the impact pressure and dynamic behavior of debris flows on scaled bridge piers were conducted. Nine pressure sensors were used to measure the impact pressure of debris flows. Flow velocities and flow depths were determined at the end of a flume using a high-speed camera. The results show that the impact pressure differed between different types of debris flows. The distribution of impact pressures from high-viscosity debris flows indicated three layers, with different features in individual event. In comparison, a layered structure was not observed in low-viscosity debris flows. Based on dimensional analyses, the impact pressure depended on Froude number (Fr) and Reynolds number (Re). For low-viscosity debris flows, the dimensionless impact pressures were power functions of Fr, while for high-viscosity debris flows, the dimensionless impact pressures were power functions of both Re and Fr. The impact frequencies of low-viscosity and high-viscosity debris flows showed considerable differences based on spectral analysis. Compared to high-viscosity debris flows, low-viscosity debris flows were characterized by relatively high velocity, strong striking pressure, and high impact frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.