Abstract

The objective of this study was to measure the draft, vertical, and lateral forces acting on the moldboard plow, para-plow without a wing, para-plow with forward-bent wing, and para-plow with a backward-bent wing at three working depths and three forward speeds in clay loam soil to investigate the use of a suitable para-plow instead of the moldboard plow. Also, modeling the draft, vertical, and lateral forces acting on the implements using Adaptive Neuro-Fuzzy Interface System (ANFIS) was another objective of this research. To measure the draft, vertical, and lateral forces, a three-point hitch dynamometer was used. The results showed that, with the increment of the forward speed and working depth, the draft force required by the used implements increased. This increase was also true for vertical and lateral forces acting on the implements. Modeling of the draft, vertical, and lateral forces acting on the implements was performed using the effective parameters of the implements, working depth, and forward traveling speed using the (ANFIS) fuzzy neural system model. The root mean square error (RMSE) for the draft, vertical, and lateral forces for the above models were obtained equal to 0.121, 0.014, and 0.016, respectively.

Highlights

  • One of the fundamental and important issues in the production cycle of agricultural products is the type of tillage operations [1]

  • Results and 1 shows the results obtained from the analysis of the variance of the data related to Discussion the measurement of the draft, vertical, and lateral forces acting on different tillage implements

  • The draft force of the para-plow equipped with a backward-bent wing in all working speeds and depths was lower than para-plow equipped with backward-bent wings, which was predictable due to the shape of the wings and the higher interaction of wings with the soil in the para-plow equipped with forward-bent wings, and the results showed good consistency with the research by Askari et al [24]

Read more

Summary

Introduction

One of the fundamental and important issues in the production cycle of agricultural products is the type of tillage operations [1]. Along with trying to do proper tillage operations, which consumes a significant portion of the energy in crop production [2], it is highly important to optimize the operations and the implements used to cultivate agricultural products [3]. Determining the force acting on these agricultural implements by the soil (soil resistance), estimating the energy required to carry out tillage operations, and choosing a favorable traction force to carry out the desired operations, as well as managing the decisions required in the implementation of large-scale mechanization to save fuel and energy consumption are of great importance [6]. Measuring the forces acting on tillage implements is one of the main goals of many researchers in the field of tillage and soil dynamics

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call