Abstract

An in-situ method for measuring air filled porosity (�a) of soils using a neutron meter was developed and evaluated for a layered, swelling clay soil. Bulk density-volumetric moisture content relationships of soil layers were used to calculate the regressions of volumetric moisture content on �a. These regressions were combined with calibration equations of the neutron meter to obtain relationships between �a and neutron counts. The �a values predicted from measured neutron count ratios show good agreement with �a values calculated from the measured bulk densities and moisture contents in a transitional red-brown earth. The method provides a rapid and non-destructive measurement of �a. Soil aeration in a transitional red-brown earth under two irrigation treatments was assessed using neutron counts to monitor the changes in �a profiles. Large soil cores which were flooded had lower profile �a values than did cores which were not flooded. However, differences were small, owing apparently to the very low rates of infiltration and redistribution. The potential use of this method to continuously monitor changes in �a profiles allows frequent calculation of aeration stress indices, which may be used to predict crop responses and yield losses due to poor aeration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call