Abstract

The emergence of obesity, insulin resistance, and type 2 diabetes in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, type 2 diabetes, and insulin resistance. Studies in adults show cardiovascular fitness to be more important than obesity in predicting insulin resistance. We recently demonstrated that a school-based fitness intervention in children who are overweight could improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. To determine whether new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by VO2max) in middle school children who were overweight. Thirty-five middle school children (mean age 12 +/- 0.4 years) who were overweight underwent testing on a power sensor-equipped Cycle Ops indoor cycle (Saris Cycling Group, Fitchburg, WI) as well as body composition by dual x-ray absorptiometry and VO2max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO2max testing, and power produced at 80%MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the indoor cycle at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight was 1.5 +/- 0.5. A significant correlation between watts and total body weight was seen for VO2max (P = 0.03), and significant negative correlation was seen between watts/total body weight and fasting insulin (P < 0.05). Among middle school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO2max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment, at substantially less cost and effort than laboratory-based measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.