Abstract

BackgroundThrombotic thrombocytopenic purpura (TTP) is characterized by severe ADAMTS-13 activity deficiency (<10%). Diagnostic testing is challenging because of unavailability, high cost, and expert technician requirement of ADAMTS-13 enzyme assays. Cost-effective, automated fiber-optic surface plasmon resonance (FO-SPR) platforms show potential for developing diagnostic tests. Yet, FO-SPR has never been explored to measure enzymatic activities. ObjectivesTo develop an easy-to-use ADAMTS-13 activity assay utilizing optical fibers to rapidly diagnose TTP. MethodsThe ADAMTS-13 activity assay was designed and optimized using FO-SPR technology based on a previously described enzyme-linked immunosorbent assay setup. A calibration curve was generated to quantify ADAMTS-13 activity in plasma of healthy donors and patients with acute immune-mediated TTP (iTTP), hemolytic uremic syndrome, or sepsis. ADAMTS-13 activity data from FO-SPR and fluorescence resonance energy transfer-based strategies (FRETS)-VWF73 reference assays were compared. ResultsAfter initial assay development, optimization improved read-out magnitude and signal-to-noise ratio and reduced variation. Further characterization demonstrated a detection limit (6.8%) and inter-assay variation (Coefficient of variation, 7.2%) that showed good analytical sensitivity and repeatability. From diverse plasma samples, only plasma from patients with acute iTTP showed ADAMTS-13 activities below 10%. Strong Pearson correlation (r = 0.854) between FO-SPR and reference FRETS-VWF73 assays were observed for all measured samples. ConclusionsA fast ADAMTS-13 activity assay was designed onto automated FO-SPR technology. Optimization resulted in sensitive ADAMTS-13 activity measurements with a detection limit enabling clinical diagnosis of TTP within 3 hours. The FO-SPR assay proved strong correlation with the reference FRETS-VWF73 assay. For the first time, this assay demonstrated the capacity of FO-SPR technology to measure enzymatic activity in pre-clinical context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.