Abstract

Elucidation of the mechanisms regulating membrane traffic of lymphocyte receptors is of great interest to manipulate the immune response, as well as for accurately delivering drugs and nanoprobes to cells. Aiming to detect and characterize regulators of endocytosis and intracellular traffic, we have modified the FACS-based endocytosis assay to measure and quantify the activity of putative endocytic regulators as EGFP chimeras. To study the activity of putative endocytosis regulators, we transfected Jurkat T-lymphocytes with EGFP-tagged constructs of the regulators to be tested. Cells were then incubated with a αCD3(APC) antibody, and were allowed to internalize the label. After acid-washing the cells, APC fluorescence was measured by flow cytometry in cells gated for EGFP(+), as well as in their EGFP(-) (transfection-resistant) counterparts that were taken as internal controls. This approach facilitated intra- and inter-assay normalization of endocytic rates/loads by comparison with the internal control. We have used this assay to test the regulatory activity of polarity kinase EMK1, and here we substantiate a role for EMK1 in the control of receptor internalization in T-lymphocytes. The method here presented gives quantitative measures of internalization, and will facilitate the development of tools to modulate endocytic rates or the intracellular fate of internalized materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.