Abstract
ABSTRACT This study aims to relate information about the waiting times of ride-sourcing services, with specific reference to Uber, using socioeconomic variables from São Paulo, Brazil. The intention is to explore the possibility of using this measure as an accessibility proxy. A database was created with the mean waiting time data per district, which was aggregated to a set of socioeconomic and transport infrastructure variables. From this database, a multiple linear regression model was built. In addition, the stepwise method selected the most significant variables. Moran's I test confirmed the spatial distribution pattern of the measures, motivating the use of a spatial autoregressive model. The results indicate that physical variables, such as area and population density, are important to explain this relation. However, the mileage of district bus lines and the non-white resident rate were also significant. Besides, the spatial component indicates a possible relation to accessibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.