Abstract
We study general state-space Markov chains that depend on a parameter, say, θ. Sufficient conditions are established for the stationary performance of such a Markov chain to be differentiable with respect to θ. Specifically, we study the case of unbounded performance functions and thereby extend the result on weak differentiability of stationary distributions of Markov chains to unbounded mappings. First, a closed-form formula for the derivative of the stationary performance of a general state-space Markov chain is given using an operator-theoretic approach. In a second step, we translate the derivative formula into unbiased gradient estimators. Specifically, we establish phantom-type estimators and score function estimators. We illustrate our results with examples from queueing theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.