Abstract

We have simulated numerically the behavior of the one-dimensional, periodic FPU-alpha and Toda lattices to optical and acoustic initial excitations of small--but finite and large amplitudes. For the small-through-intermediate amplitudes (small initial energy per particle) we find nearly recurrent solutions, where the acoustic result is due to the appearance of solitons and where the optical result is due to the appearance of localized breather-like packets. For large amplitudes, we find complex-but-regular behavior for the Toda lattice and "stochastic" or chaotic behaviors for the alpha lattice. We have used the well-known diagnostics: Localization parameter; Lyapounov exponent, and slope of a linear fit to linear normal mode energy spectra. Space-time diagrams of local particle energy and a wave-related quantity, a discretized Riemann invariant are also shown. The discretized Riemann invariants of the alpha lattice reveal soliton and near-soliton properties for acoustic excitations. Except for the localization parameter, there is a clear separation in behaviors at long-time between integrable and nonintegrable systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call