Abstract

Many of the recent secondary structure prediction methods incorporate the idea of fuzzy set theory, where instead of assigning a definite secondary structure to a query residue, probability for the residue being in each of the conformational states is estimated. Moreover, continuous assignment of conformational states to the experimentally observed protein structures can be performed in order to reflect inherent flexibility. Although various measures have been developed for evaluating performances of secondary structure prediction methods, they depend only on the most probable secondary structures. They do not assess the accuracy of the probabilities produced by fuzzy prediction methods, and they cannot incorporate information contained in continuous assignments of conformational states to observed structures. Three important measures for evaluating performance of a secondary structure prediction algorithm, Q score, Segment OVerlap (SOV) measure, and the k-state correlation coefficient (Corr), are deformed into fuzzy measures F score, Fuzzy OVerlap (FOV) measure, and the fuzzy correlation coefficient (Forr), so that the new measures not only assess probabilistic outputs of fuzzy prediction methods, but also incorporate information from continuous assignments of secondary structure. As an example of application, prediction results of four fuzzy secondary structure prediction methods, PSIPRED, PROFking, SABLE, and PREDICT, are assessed using the new fuzzy measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.