Abstract

Wear of ultra-high-molecular-weight polyethylene (UHM-WPE) inlays is associated with aseptic loosening in total knee replacement (TKR). The aim of this study was to investigate the in vitro performance of a TKR system that combines several measures to decrease UHMWPE wear. Tests were carried out on a BPK-S Integration system (R&D, P. Brehm Chirurgie-Mechanik, Weisendorf, Germany) according to ISO 14,243-1 in a knee joint simulator. Calf serum with a high protein concentration of 30 g/l was chosen as the test lubricant. PE wear was measured gravimetrically. Particle analysis was performed by scanning electron microscopy, with measurement of particle size and shape. Low mean wear rates of 1.20 mg per million cycles were found for the fixed bearing type and 2.47 mg per million cycles for the rotating-platform bearing design. Anteroposterior deflection was low. The contact areas for both types of bearings were large and showed a constant pattern throughout the test. Backside wear was obvious on rotating platforms. Particle analysis revealed equally sized and round-shaped particles in both types of bearings (fixed, 0.35 microm; mobile, 0.32 microm). In conclusion, the combination of design features and surface modifications of the BPK-S integration TKR system leads to low gravimetric UHMWPE wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call