Abstract

A new class of tissue-equivalent proportional counters has been flown on two space shuttle flights. These detectors and their associated electronics cover a lineal energy range from 0.4 to 1250 keV/microns with a multichannel analyzer resolution of 0.1 keV/microns from 0.4 to 20 keV/microns and 5 keV/microns from 20 to 1250 keV/microns. These detectors provide the most complete dynamic range and highest resolution of any technique currently in use. On one mission, one detector was mounted in the Shuttle payload bay and another older model in the mid-deck, thus providing information on the depth dependence of the lineal energy spectrum. A detailed comparison of the observed lineal energy and calculated LET spectra for galactic cosmic radiation shows that, although the radiation transport models provide a rather accurate description of the dose (+/- 15%) and equivalent dose (+/- 15%), the calculations significantly underestimate the frequency of events below about 100 keV/microns. This difference cannot be explained by the inclusion of the contribution of splash protons. The contribution of the secondary pions, kaons and electrons produced in the Shuttle shielding, if included in the radiation transport model, may explain these differences. There are also significant differences between the model predictions and observations above 140 keV/microns, particularly for 28.5 degrees inclination orbit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.