Abstract
Due to their ability to trap large magnetic inductions, superconducting bulk materials can be used as powerful permanent magnets. The permanent magnetization of such materials, however, can be significantly affected by the application of several cycles of a transverse variable magnetic field. In this work, we study, at T=77K, the long term influence of transverse ac magnetic fields of small amplitudes (i.e. much smaller than the full penetration field) on the axial magnetization of a bulk single grain superconducting GdBCO pellet over a wide range of low frequencies (1mHz–20Hz). Thermocouples are placed against the pellet surface to probe possible self-heating of the material during the experiments. A high sensitivity cryogenic Hall probe is placed close to the surface to record the local magnetic induction normal to the surface.The results show first that, for a given number of applied triangular transverse cycles, higher values of dBapp/dt induce smaller magnetization decays. An important feature of practical interest is that, after a very large number of cycles which cause the loss of a substantial amount of magnetization (depending on the amplitude and the frequency of the field), the rate of the magnetization decay goes back to its initial value, corresponding to the relaxation of the superconducting currents due to flux creep only. In the amplitude and frequency range investigated, the thermocouples measurements and a 2D magneto-thermal modelling show no evidence of sufficient self-heating to affect the magnetization so that the effect of the transverse magnetic field cycles on the trapped magnetic moment is only attributed to a redistribution of superconducting currents in the volume of the sample and not to a thermal effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.