Abstract

The Bahamas Optical Turbulence Experiment (BOTEX) was conducted in the summer of 2011 to investigate the impact of turbulence on underwater optical imaging. Underwater optical properties can be affected by turbulence in the water, due to localized changes in the index of refraction. We discuss measurements of current velocity and temperature, made with a Nortek Vector Acoustic Doppler Velocimeter (ADV) and PME Conductivity- Temperature (CT) probe, as well as observations made with a Rockland Oceanographic Vertical Microstructure Profiler (VMP). The instruments were deployed in close proximity in the field and in the context of measurements of optical target clarity. Turbulent kinetic energy dissipation (TKED) and temperature dissipation (TD) rates are calculated from the ADV/CT measurements and compared to TKED and TD estimated from the data collected with the VMP. The results show reasonable agreement between the two methods; differences are attributed to turbulence patchiness and intermittence, as well as sampling challenges. The study also highlights the importance of collecting concurrent data on temperature, current velocity, and current shear to assess the turbulence impact on underwater optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.