Abstract

A novel measurement technique, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), for rapid (1 s time resolution) and sensitive (precision approximately 100 parts per trillion by volume (10(-12); pptv)) quantification of total peroxy nitrate (SigmaPN) and total alkyl nitrate (SigmaAN) abundances in laboratory-generated gas mixtures is described. The organic nitrates are dissociated in a heated inlet to produce NO(2), whose concentration is monitored by pulsed-laser CRDS at 532 nm. Mixing ratios are determined by difference relative to a cold inlet reference channel. Conversion of laboratory-generated mixtures of AN in zero air (at an inlet temperature of 450 degrees C) is quantitative over a wide range of mixing ratios (0-100 parts per billion by volume (10(-9), ppbv)), as judged from simultaneous measurements of NO(y) using a commercial NO-O(3) chemiluminescence monitor. Conversion of PN is quantitative up to about 4 ppbv (at an inlet temperature of 250 degrees C); at higher concentrations, the measurements are affected by recombination reactions of the dissociation products. The results imply that TD-CRDS can be used as a generic detector of dilute mixtures of organic nitrates in air at near-ambient concentration levels in laboratory experiments. Potential applications of the TD-CRDS technique in the laboratory are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call