Abstract
Solar acoustic waves are scattered by sunspots because of the interaction between the acoustic waves and sunspots. We use a deconvolution scheme to obtain the wavefunction of the acoustic wave on the solar surface at various times from cross-correlation functions computed between an incident wave and the signals at other points on the surface. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We study the wavefunctions of scattered waves with the incident waves of radial order n = 0-5 for two sunspots, NOAAs 11084 and 11092. The scattered wave is predominant in the forward direction of the incident wave, but its wavefronts are curved. The shape of the wavefronts depends on the ratio of sunspot dimension to wavelength of the incident wave. The smaller the ratio is, the closer to circular the scattered wave is. The scattering strength, i.e. the magnitude of the scattered wave relative to that of the incident wave, decreases with the radial order n. This suggests that the region generating the scattered wave is shallower than the depth of the f-modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.