Abstract

Abstract Results on the transmission loss of a dry and a wet C-band weather radar radome at different rain intensities are presented. Two methods were used in the study, both carried out under laboratory conditions. In the first method, the complex permittivity of a dry radome is measured and the transmission loss calculated. To analyze the transmission loss of a wet radome, the thickness of a continuous water layer on the surface of a radome at different rain intensities and the complex permittivity of water are calculated. In the second method, the transmission loss is measured as a free space transmission measurement with a 1.3-m2 piece of a radome panel. The piece is measured as dry and as doused by a rain system designed for the measurements. The measurements are performed with a dirty, cleaned, and waxed radome to examine the effects of maintenance measures with an old radome on the transmission loss. Because the transmission loss as a function of rain intensity is measured with a small piece of radome, a method is developed to scale the free space measurements for a complete 6.7-m-diameter radome with equal dielectric properties. Results of the one-way transmission loss of a dry radome with the permittivity and free space measurements are in a good agreement (0.34 and 0.35 dB, respectively). According to the analysis, a continuous water layer on a radome has a significant influence on the transmission loss. A 3-dB two-way transmission loss caused by a dirty radome is observed at a rain intensity of 15.1 mm h−1. Waxing gives promising results in reducing the wet radome loss because the waxing prevents the formation of a continuous water layer on the surface of the radome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.