Abstract
The studies in this paper are part of systematic investigations of the lateral analytical resolution of the field emission electron microprobe JEOL JXA-8530F. Hereby, the quantitative lateral resolution, which is achieved in practise, is in the focus of interest. The approach is to determine the minimum thickness of a metallic layer for which an accurate quantitative element analysis in cross-section is still possible. Previous measurements were accomplished at sputtered gold (Z = 79) layers, where a lateral resolution in the range of 140 to 170 nm was achieved at suitable parameters of the microprobe. To study the Z-dependence of the lateral resolution, now aluminium (Z = 13) resp. silver (Z = 47) layers with different thicknesses were generated by evaporation and prepared in cross-section subsequently by use of a focussed Ga-ion beam (FIB). Each layer was analysed quantitatively with different electron energies. The thinnest layer which can be resolved specifies the best lateral resolution. These measured values were compared on the one hand with Monte Carlo simulations and on the other hand with predictions from formulas from the literature. The measurements fit well to the simulated and calculated values, except the ones at the lowest primary electron energies with an overvoltage below ∼ 2. The reason for this discrepancy is not clear yet and has to be clarified by further investigations. The results apply for any microanalyser – even with energy-dispersive X-ray spectrometry (EDS) detection – if the probe diameters, which might deviate from those of the JEOL JXA-8530F, at suitable analysing parameters are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.