Abstract

Frequency-domain spatial-correlation analysis of recorded acoustic fields is typically limited to the bandwidth of the recordings. A previous study [Lipa, Worthmann, and Dowling (2018) J. Acoust. Soc. Am. 143(4), 2419-2427] suggests that limiting such analysis to in-band frequencies is not strictly necessary in a Lloyd's mirror environment. In particular, below-band field information can be retrieved from the frequency-difference autoproduct, a quadratic product of measured complex pressure-field amplitudes from two nearby frequencies. The frequency-difference autoproduct is a surrogate field that mimics a genuine acoustic field at the difference frequency. Here, spatial-correlation analysis is extended to deep-ocean acoustic fields measured during the PhilSea10 experiment. The frequency-difference autoproduct, at difference frequencies from 0.0625 to 15 Hz, is determined from hundreds of Philippine Sea recordings of 60 or 100 Hz bandwidth signals with center frequencies from 172.5 to 275 Hz broadcast to a vertical receiving array 129-450 km away. The measured autoproducts are cross correlated along the array with predicted acoustic fields and with predicted autoproduct fields at corresponding below-band frequencies. Stable measured cross correlations as high as 80%-90% are found at the low end of the investigated difference-frequency range, with consistent correlation loss due to mismatch at the higher below-band frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call