Abstract

[1] We measure primary drainage capillary pressure and the relationship between initial and residual non-wetting phase saturation for a supercritical carbon dioxide (CO2)-brine system in Berea sandstone. We use the semi-permeable disk (porous-plate) coreflood method. Brine and CO2 were equilibrated prior to injection to ensure immiscible displacement. A maximum CO2 saturation of 85% was measured for an applied capillary pressure of 296 kPa. After injection of brine the CO2 saturation dropped to 35%; this is less than the maximum trapped saturation of 48% measured in an equivalent n-decane (oil)-brine experiment. The dimensionless capillary pressure is the same to within experimental error for supercritical CO2-brine, n-decane-brine and a mercury-air system. CO2 is the non-wetting phase and significant quantities can be trapped by capillary forces. We discuss the implications for CO2 storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.