Abstract

ABSTRACTCopper-based leadframe sheets were oxidized in a black-oxide forming solution, molded with epoxy molding compound (EMC), and the interfacial fracture toughness was measured using sandwiched double cantilever beam (SDCB) and sandwiched Brazil-nut (SBN) specimens.Results showed that pebble-like Cu2O precipitates on the leadframe had almost no adhesion to EMC while the opposite was true of the acicular CuO precipitates. Thus, the fracture toughness of the leadframe/EMC interface was close to zero in the beginning but rapidly increased to ˜100 J/m2 as acicular CuO nucleated on the smooth-faceted Cu2O layer. Under the mixed Mode loading the fracture toughness increased parabolically with the phase angle (ψ) with minimum at ψ = 0°. For ψ < -340, interface crack kinked into EMC. Fractography analyses based on XRD, SEM and AES studies showed that the failure path along the leadframe/EMC interface varied significantly with the loading condition and the crack speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call