Abstract

We report on a novel experimental setup using a miniature integrating sphere fitted into a cryostat to measure spectrally resolved the absolute external photoluminescence quantum efficiency ηlum in the temperature range from 6 K to beyond room temperature. Direct access to ηlum is achieved by an uncomplicated method to calibrate the spatially integrated emission spectra absolutely. The fraction of light coupled out of the sphere into the detection system is in good approximation independent of the emitted wavelength and the emission characteristics of the investigated samples, due to their smallness compared with the total sphere area. This fact is proved by theoretical calculations for the sphere throughput and the irradiance within the sphere. To demonstrate the capabilities of this setup, we investigate in high quality ZnSe/ZnMgSSe 10× multiple quantum wells, the temperature dependence of the quantum efficiency, simultaneously for the quantum well and the barrier luminescence. Within a thermal activation model, three processes are found to contribute to the thermal quenching of ηlum of the quantum well luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.