Abstract

We report the electrical conductivity of laser-produced warm dense aluminum plasmas measured using single-shot ultrafast terahertz (THz) frequency spectroscopy. In contrast with experiments performed at optical frequencies, measurements based upon THz probe reflectivity directly determine a quasi-dc electrical conductivity, and therefore the analysis does not require a free-electron Drude model based extrapolation to recover the near zero frequency conductivity. In fact, our experimental results indicate that the Drude model breaks down for warm (>0.6 eV), moderate-dense (<1.6 g/cm(3)) aluminum at THz frequencies. A calculation of THz reflectivity over a non-Fresnel boundary in dense plasmas is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.