Abstract

Measurements of the noise field from a 25 mm diameter subsonic air jet are presented. These results are analysed in some detail by determining both the jet velocity dependence and the directivity of the intensity of the radiation in 1/3-octave bands at particular values of the frequency parameter, \[ (fD/V_J)(1-M_c\cos\theta). \] This procedure should ensure that a particular source in a geometrically similar position in the jet is always observed, whatever the jet velocity, diameter and emission angle.These results are compared with the predictions of Lighthil's (1952) theory of convected quadrupoles. It is shown that the theory predicts the variation of the intensity with jet velocity and emission angle provided that the observed frequency is below a certain critical value, which depends on jet diameter and emission angle and is independent of jet velocity. Above this critical frequency, the predicted variations overestimate the measurements and it appears that the convective amplification predicted by the theory is much reduced. The variation of this critical frequency is explained by assuming that substantial interaction occurs between the radiated sound and the jet flow when the wavelength of the sound becomes shorter than the sound path length in the jet flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call