Abstract
Ammonia (NH3) has emerged as an attractive carbonless fuel that can be co-fired with hydrocarbon fuel to reduce carbon dioxide emissions. To understand the influence of NH3 on soot formation when co-fired with hydrocarbons, the soot formation propensity is experimentally investigated via a laminar diffusion jet flame. A stable ethylene (C2H4) jet flame doped with NH3 at different volume percentages was established for the investigation of soot formation tendency. OH* chemiluminescence imaging revealed the change of flame structure, in which the signals emitted from the heat release region weakened with increasing NH3 addition, while the peak intensity shifted from the flame wings towards flame centerline region. The laser extinction method used to measure the soot volume fraction (SVF) at different heights above the burner, which showed the effect of NH3 on soot suppression is significant, owing to the interaction between N-containing compounds with carbon atoms that result in the reduction of key intermediate products required for the formation of benzene and polycyclic aromatic hydrocarbons (PAH). The effect of soot inhibition appears to be stronger for the low NH3 blend fraction. The chemistry effect of NH3 on soot reduction for C2H4 flame is ascertained by comparing with N2-doped C2H4 flame at the same volume percentage. This work highlights the need for improved understanding of hydrocarbon fuel with NH3 to enable detailed understanding on the soot generation and oxidation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.