Abstract

To determine the separation diameter of bubbles in a liquid metal melt, an original technique based on the conductivity method is proposed. A thin electrode is installed in the center of the outflow channel, and the separation of bubbles is determined by closing and opening the electrical circuit. In this way, the separation frequency of the bubbles and their volume can be determined. Additional studies are carried out on a transparent liquid (water). It is shown that the presence of an electrode has little effect on the process of bubble detachment. The processing data of high-speed video filming and the proposed method in a transparent liquid coincide with high accuracy. Measurements of the frequency of bubble detachment in melts of the Rose and lead alloy are carried out. The results obtained are used to tune two-phase flow models when simulating fast neutron reactors with heavy liquid metal coolants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.