Abstract

This manuscript provides step by step description of the manufacturing process of a test section designed to measure the local instantaneous heat transfer coefficient as a function of the liquid flow rate in a transparent pipe. With certain amendments, the approach is extended to gas-liquid flows, with a particular emphasis on the effect of a single elongated (Taylor) air bubble on heat transfer enhancement. A non-invasive thermography technique is applied to measure the instantaneous temperature of a thin metal foil heated electrically. The foil is glued to cover a narrow slot cut in the pipe. The thermal inertia of the foil is small enough to detect the variation in the instantaneous foil temperature. The test section can be moved along the pipe and is long enough to cover a considerable part of the growing thermal boundary layer. At the beginning of each experimental run, a steady state with a constant water flow rate and heat flux to the foil is attained and serves as the reference. The Taylor bubble is then injected into the pipe. The heat transfer coefficient variations due to the passage of a Taylor bubble propagating in a vertical pipe is measured as function of the distance of the measuring point from the bottom of the moving Taylor bubble. Thus, the results represent the local heat transfer coefficients. Multiple independent runs preformed under identical conditions allow accumulating sufficient data to calculate reliable ensemble-averaged results on the transient convective heat transfer. In order to perform this in a frame of reference moving with the bubble, the location of the bubble along the pipe has to be known at all times. Detailed description of measurements of the length and of the translational velocity of the Taylor bubbles by optical probes is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.