Abstract

A laser heterodyne system was used to measure the phase fluctuations imposed on a 1.5 μm wavelength laser beam when double-passed over long atmospheric paths. Two distances were used: 2 and 17.5 km. Results are given for intensity scintillation, phase fluctuation time series and spectra, and phase structure function. The results are found to agree well with theory: the spectrum of phase fluctuations follows the 8/3 power law predicted for Kolmogorov turbulence over 3 orders of magnitude in frequency. The methods reported here could be used to investigate large-scale temperature variations in the atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.