Abstract

It is demonstrated that phase-difference scintillations measured with a coherent dual-frequency radio system such as that on Mariner 10 can be used to study the structure of density fluctuations in the solar wind covering a wider range of scale sizes than has ever been possible before. The Mariner 10 observations at solar elongations of 11.5 and 12.6 deg show that the density spectrum in the frequency range from 0.0001 to 0.5 Hz, which corresponds to the spatial wavenumber range of 2 millionths to 0.001 inverse km if the solar wind velocity is assumed to be 350 km/s, is approximately power-law and close to Kolmogorov (spectral index of 11/3). The results are consistent with direct spacecraft observations near earth and provide strong evidence that the density fluctuations are produced by turbulence. The potential and benefits of future extensive measurements are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call