Abstract

This work investigates the laminar flame speed, SN, of gas-to-liquid (GTL) fuel and its 50–50% by volume blends with conventional diesel, in a cylindrical bomb capable of measuring SN at different initial temperatures and equivalence ratios at ambient pressure. SN was measured by analysing the pressure signals after combustion detected by a pressure transducer mounted on the bomb. Direct visualization has also been conducted to observe the ignition and flame propagation. It was found that pure GTL fuel has the highest SN near stoichiometric conditions, which is about 88.3 cm/s. However, at lean and rich mixtures, SN of GTL is slightly lower than that of the conventional diesel. The blended fuel has the lowest SN at lean and rich mixture conditions comparing with those of GTL and diesel fuels. Studying the effect of increasing the initial temperature on SN revealed that SN of the three tested fuels increases with the increase in the initial temperature almost linearly. However, the blended fuel has the lowest SN at the highest temperature, about 89.7 cm/s at 250 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call