Abstract

In TAE Technologies' C-2W experiment, electrode biasing is utilized for boundary control of a field-reversed configuration (FRC) plasma embedded in a magnetic mirror. Understanding the underlying physics associated with FRC rotation, stabilization, and heating is crucial for improving machine performance. Impurity ion rotation and temperature are sensitive to biasing effects, and measurements of these quantities can provide insight into important plasma dynamics and overall effectiveness of the biasing system. To this end, a charge-exchange recombination spectroscopy (ChERS) diagnostic was developed and deployed to measure local impurity ion temperature and velocity in the confinement vessel of C-2W. The system utilizes a new diagnostic neutral beam (40 keV, 8.5A) and a fiber-coupled spectrometer with an image-intensified high-speed camera to measure beam-induced spectral line emission at multiple lines-of-sight. Design details and the first experimental results obtained with this new diagnostic are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call