Abstract

AbstractIncreasing freshwater input to the subpolar North Atlantic through iceberg melting can influence fjord‐scale to basin‐scale ocean circulation. However, the magnitude, timing, and distribution of this freshwater have been challenging to quantify due to minimal direct observations of subsurface iceberg geometry and melt rates. Here we present novel in situ methods capturing iceberg change at high‐temporal and ‐spatial resolution using four high‐precision GPS units deployed on two large icebergs (>500 m length). In combination with measurements of surface and subsurface geometry, we calculate iceberg melt rates between 0.10 and 0.27 m/d over the 9‐day survey. These melt rates are lower than those proposed in previous studies, likely due to using individual subsurface iceberg geometries in calculations. In combining these new measurements of iceberg geometry and melt rate with the broad spatial coverage of remote sensing, we can better predict the impact of increasing freshwater injection from the Greenland Ice Sheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.