Abstract

The problem of developing measuring instruments for high levels of laser power of the pass-through type was posed and solved. Methods for solving the problem are presented. A measuring instrument has been developed, in which a two-step circuit design is applied for power attenuation of the laser beam to an operating level as measured by the radiation detector. It is shown that due to the original design of the attenuation steps and their arrangement in relation to the laser beam it is possible to achieve values of the attenuation coefficient of (0.2–0.4)·1010 and to measure power up to 10–15 kW without forced cooling of elements of the measuring instrument. Application of the design of steps makes it possible to reduce the dimensions of the measuring instrument and pass practically all radiation to the output without changing the characteristics of the initial laser beam. The measuring instrument that was developed differs from known analogs and is suitable for work with process lasers. For reliable measurement of laser radiation power, the conditions were determined for selecting the time constant of integration of the radiation detector. The connection between the time constant of integration of the radiation detector and the geometrical characteristics of the measuring instrument is shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call