Abstract

One of the puzzles of the recent investigations on the exchange anisotropy in ferromagnetic (FM)/antiferromagnetic (AF) bilayers is the fact that different techniques yield different values for the exchange field (HE) between the layers. We report an investigation on sputtered NiFe/NiO carried out with three different techniques, namely, magneto-optical Kerr effect magnetometry (MOKE), Brillouin light scattering (BLS), and ferromagnetic resonance (FMR). In an attempt to reconcile the measurements obtained with the various techniques, we interpret the data with a model that includes the formation of a planar domain wall in the AF layer, giving rise to a torque on the FM moment represented by an effective domain wall field (HW). We find out that while the same pair of values of HE and HW provide equally good fits to the reversible FMR and BLS measurements, different pairs are necessary to fit the irreversible magnetometry data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call