Abstract

When a biological tissue is subjected to a mechanical load, an electrical potential gradient is generated. Such potential gradient is associated with the flow of charged particles through a matrix with fixed charges. A deformation of the matrix causes a fluid flow relatively to the solid matrix. This fluid flow tends to separate the freely moving ions in the fluid from the oppositely charged particles, that are attached to the matrix. In this way, an electrical field is created collinear to the fluid flow. This results in an electrical potential. A similar effect appears when charged particles start moving because of a chemical load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.