Abstract
The experimental setup and methodology used to measure prompt neutron angular and energy distributions from thermal neutron-induced fission are described. The neutrons are detected using two scintillation detectors, while the fission fragments are detected by multi-wire proportional detectors in conjunction with the TOF technique. To separate events corresponding to neutrons and γ-quanta, a double discrimination by the pulse shape and the time-of-flight is applied. Some preliminary results of an experiment performed with the 235U target are presented and briefly discussed. The yield of “scission” neutrons has been estimated in the framework of a simple evaporation model and was found not to exceed 5% of the total neutron yield. Including an assumed of anisotropy of the fission neutron angular distribution in the center-of-mass system of fission fragments into the model calculation leads to an increase in the “scission” neutron yields inferred from the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.