Abstract

The Axial Shield Experiment was conducted at the Oak Ridge National Laboratory (ORNL) during 1990--1991 as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program starting in 1986. The program is intended to provide support for the development of current designs proposed for advanced liquid metal reactor (LMR) system both in Japan and the United States. As in the previous two experiments, the same spectrum modifier was used to alter the Tower Shielding Reactor source spectrum to one representing the LMR neutron spectra directly above the core in the area of the fission-gas plenum. In one of the measurements the spectrum was further modified by the fission gas plenum. In all cases the modified spectrum was followed by combinations of seven hexagon assemblies that represented different coolant flow and shielding patterns within the assemblies. The varied configuration permitted not only a study of the different designs, but also allowed a comparison to be made of the relative neutron attenuation effectiveness of boron carbide and stainless steel in such designs. This experiment was the third in a series of eight experiments to be performed as part of a cooperative effort between the United States Department of Energy (US DOE) and the Japan Power Reactor and Nuclear Fuel Development Corporation (PNC). This experiment, as was the previous Radial Shield Attenuation and Fission Gas Plenum Experiments, intended to provide support for the development of advanced sodium-cooled reactors. 5 refs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.