Abstract

This study measured 71 volatile organic compounds (VOCs) collected using stainless steel canisters at 15 monitoring sites in two main Kaohsiung municipal sewers, A-Sewer and B-Sewer, during winter and summer periods in 2008 and 2009. The results indicate that the overall average of total VOCs, TVOC, in A-Sewer was 1173.51 ± 187.69 μg/m3, which was about 40% higher than that in B-Sewer (689.22 ± 151.64 μg/m3). However, TVOC in the winter/dry season was about three (or five) times that in the summer/wet season for A-Sewer (or B-Sewer). For the A-Sewer, chlorinated organics, aromatics, and alkanes were predominant, and altogether contributed to about 90.0% of the TVOC in winter and about 70.6% in summer, with alkenes, ethers, ketones, and sulfur compounds as minor components. For B-sewer, aromatics, alkanes, and chlorinated organics were predominant, and altogether contributed to about 94.1% of the TVOC in winter and about 74.3% in summer, while others were minor ones. The principal component analysis (PCA) and absolute component scores (APCS) models indicate that the percentage source contributions for A-Sewer were solvent usage (31.65 ± 11.27%), oil refineries and storage leaks (28.71 ± 11.52%), auto paintings (19.14 ± 9.74%), asphalt plants (17.05 ± 8.73%), and others (3.45 ± 3.95%). The percentage source contributions for B-Sewer were printing factories (45.35 ± 9.19%), oil refineries and storage leaks (31.78 ± 8.59%), solvent usage (18.64 ± 8.50%), and dry cleaning (4.23 ± 4.70%).

Highlights

  • Modern cities operate sewage treatment plants that receive wastewater discharged from various sources, including industry, residential households, public institutions, and commercial facilities

  • The results indicate that the overall average of total volatile organic compounds (VOCs), TVOC, in A-Sewer was 1173.51 ± 187.69 μg/m3, which was about 40% higher than that in B-Sewer (689.22 ± 151.64 μg/m3)

  • The principal component analysis (PCA) and absolute component scores (APCS) models indicate that the percentage source contributions for A-Sewer were solvent usage (31.65 ± 11.27%), oil refineries and storage leaks (28.71 ± 11.52%), auto paintings (19.14 ± 9.74%), asphalt plants (17.05 ± 8.73%), and others (3.45 ± 3.95%)

Read more

Summary

Introduction

Modern cities operate sewage treatment plants that receive wastewater discharged from various sources, including industry, residential households, public institutions, and commercial facilities. This study measured 71 VOCs in the gaseous phase in the two sewers in the winter/dry and summer/wet seasons in Kaohsiung City in southern Taiwan from 2008–2009.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.