Abstract
To understand the molecular interactions between N,N-dimethylformamide (DMF) with two families of ionic liquids (ILs), we have measured thermophysical properties such as densities (rho) and ultrasonic sound velocities (u) over the whole composition range at 25 degrees C under atmospheric pressure. The excess molar volume (V(E)) and the deviation in isentropic compressibilities (DeltaK(s)) were predicted using these properties as a function of the concentration of IL. These results are fitted to the Redlich-Kister polynomials. The materials investigated in the present study included two families of ILs such as ammonium salts and imidazolium salts. Diethylammonium acetate ([Et(2)NH][CH(3)COO], DEAA), triethylammonium actetate ([Et(3)NH][CH(3)COO], TEAA), triethylammonium dihydrogen phosphate ([Et(3)NH][H(2)PO(4)], TEAP), and triethylammonium sulfate ([Et(3)NH][HSO(4)], TEAS) are ammonium salts and 1-benzyl-3-methylimidazolium chloride ([Bmim][Cl]) belongs to the imidazolium family. The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.