Abstract

A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM 2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM 2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM 2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM 2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call