Abstract

The reproducibility of diamagnetic flux measurements in vacuum field shots for the internal and external diamagnetic flux measurements in the ASDEX Upgrade tokamak is investigated. A comparison of diamagnetic flux measurements and predictions from equilibrium reconstruction, including pressure constraints from thermal and fast-ion contributions, is reported. The ideal magnetohydrodynamic model involved in interpreting diamagnetic flux measurements in a tokamak with anisotropic pressure is summarised. The plasma energy calculated from equilibrium reconstruction and inferred from diamagnetic flux measurements is compared with the respective values calculated by modelling with TRANSP and IDE/RABBIT. It is found that at low densities, in discharges with parallel neutral beam sources, the plasma energy inferred from the diamagnetic flux measurements is smaller than the plasma energy calculated from the equilibrium reconstruction. In addition, details of the modelling are discussed to stress the interdependence of the various modelling inputs and the interpretation of the results. A comparison of diamagnetic flux measurements with calculations from equilibrium reconstruction by IDE and fast-ion profiles from RABBIT and TRANSP simulations can identify anisotropic plasma discharges and provide a consistency check of the input data for modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.