Abstract

Editor's note: The material in this paper was prepared and presented (OTC Paper 15201) at the 2003 Offshore Technology Conference, 5–8 May in Houston, Texas, U.S., and is published with permission. Shallow overpressures and shallow water flow (SWF) are significant hazards to deepwater drilling and facilities. In this paper we demonstrate how a combination of geomorphology, hydrogeology, and seismic interpretation has been successfully used in infer shallow overpressures, to develop a testable hypothesis of pore pressure distribution, and to delineate where to collect in-situ data. In-situ pore pressure measurements provide ground-truth data that can validate the model and be used to evaluate the hazards that internally driven failure might pose for facilities development. Several slope failures on the Sigsbee Escarpment in the Mad Dog and Atlantis field areas show a geomorphology distinct from “top-down” slope failures. Specifically, these slumps have steep, amphitheater-shaped headscarps, shallowly sloping bases, sharp inflection points with the surrounding seafloor at both the top and bottom of the headscarp, a linear trend in map view, and linear side walls. These geomorphic characteristics suggest that the slumps are formed by internally driven failure, and that the slumps grow retrogressively by headward migration. Within the Mad Dog and Atlantis field areas, Mad Dog Slump 8 and Atlantis Slump A are the best examples of this morphology; in this paper we will focus our attention on Mad Dog Slump 8 due to its proximity to planned facilities. The types of slope failures discussed in this paper are found on many margins worldwide. Their characteristic morphology indicates that the primary mechanism of slope failure is due to internal forcing (overpressure, weakening), rather than by downslope erosional flow. Internally driven slope failures can provide clues about the shallow overpressure regime, and provide exploration targets. Because the ocean is at constant head, and …

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call