Abstract

High-resolution acoustic measurements of low-frequency near-surface backscattering at low grazing angles have been made in the open ocean using vertical arrays of coherent sources. Over the range of wind speeds (4-18 m/s) encountered, the normalized data amplitudes exhibited variable non-Rayleigh behavior, from near Rayleigh in the highest sea states to near lognormal in low-to-moderate sea states. Seven probability density function (pdf) models were fit to the data, with the three-component Rayleigh mixture providing the most consistent fits and the least errors. One pdf model, the Poisson-Rayleigh, provided not only good fits to many data sets, but also physical insights into the scattering process. This model's estimates of the expected number of discrete scatterers ranged from 200/km/sup 2/ at low wind speeds to 2000/km/sup 2/ at high wind speeds, consistent with the expected densities of fish and subsurface bubble clouds, respectively. These results are encouraging with regard to developing physical models capable of using local results (such as these) to accurately predict long-range reverberation and clutter statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.