Abstract
Deposited particles are transported into and within buildings by adhering to and releasing from people's shoes. To better understand transport of deposited particulate contaminants and exposures to these materials, experimental data on tracking by foot traffic are needed. Laboratory experiments measured uptake and downlay mass transfer efficiencies of particles between shoes and floors in a step-simulation chamber. Equilibrium uptake transfer fractions, the net mass fraction transferred from floors to shoes after several steps, were also measured. Single-step uptake and downlay transfer efficiencies ranged from 0.02 to 0.22 and equilibrium uptake transfer fractions were 0.10-0.40. Particle size, particle loading, shoe type, floor type, step pressure, and step sequence were all investigated. Experiments demonstrated that single-step downlay transfer efficiencies decrease with each successive step onto clean floors. A simple empirical model is proposed to estimate these transfers as a function of step number. Simulations using the transfer efficiency values measured here illustrate the spread of deposited particles by people walking in a hypothetical hallway. These simulations show that in locations where a few people walk over the same area each minute, tracking can spread deposited material over length scales comparable to building dimensions in just a few hours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.