Abstract

Adsorption equilibria of five volatile organic compounds (VOCs) (toluene, acetone, n-hexane, n-decane and methanol) on activated carbon in supercritical carbon dioxide were studied. Measurements were performed with a fixed bed method for activated carbon fine particles (ca. 74–147μm diameter), a specific surface area at 1300m2/g and a mean pore diameter, micropore volume of 0.687nm and 0.441cm3/g, respectively. Characteristic adsorption isotherms varied greatly for each VOC that can be attributed to differences in two interactions, VOC and activated carbon, VOC and supercritical carbon dioxide in the bulk phase, respectively. Adsorption amount of each VOC increased with increasing temperature and decreasing pressure. Adsorption isotherm equilibria could be correlated with the Dubinin–Astakhov equation using two parameters within 6.5% of average relative deviation. The parameters of the Dubinin–Astakhov equation were found to be a function of the chemical species, carbon dioxide density and VOC molar volume. These results indicate a possibility of developing a predictive model for the adsorption equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.