Abstract

This paper presents a path loss model for an ultra wideband (UWB) wireless body area network (WBAN) on-body communication. The modelling is based on the static frequency domain measurements in an anechoic chamber. The studies are done for several on-body radio channels and with two different UWB antennas (dipole and double loop) for the frequency range of 2-8 GHz. A linear least squares (LS) polynomial data fitting is applied to the post processed measurement data resulting parameters for a path loss model. It is shown that the loop antenna outperforms the dipole antenna in respect to the slope of the attenuation. However, the path loss at the reference distance is higher for the loop. It is also shown that the signal propagation delay in the antenna structures causes error in distance measurement and unless the error is compensated significant differences in the parameters of the path loss model may occur in a WBAN case. Finally, it is observed that by using energy detection notable benefit can be obtained if all propagation paths are considered instead of the first arriving path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.