Abstract

Massive multiple-input multiple-output (MIMO) is a key technology for 5G wireless communications since it can improve network throughput, capacity, spatial efficiency, etc. utilizing large-scale antenna arrays. In this paper, we study the direction of departure (DOD) and direction of arrival (DOA) power spectra and the angular spreads for suburban line-of-sight (LoS) environment. Our study is based on a measurement campaign conducted at a carrier frequency of 3.5GHz, with a bandwidth of 160MHz and ±45° dual-polarized 4×8 planar and cylindrical antenna arrays at the transmitter and the receiver, respectively. The space-alternating generalized expectation-maximization (SAGE) algorithm is applied to jointly estimate the DOA, DOD, delay and complex amplitude of the propagation channel measured by the massive MIMO system. Results show that the double-directional channel characteristics exhibit dependence with the employed polarization combination. The obtained characterization results are of great value for the analysis of polarization-dependent design and antenna selection strategies for MIMO systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.