Abstract

As a reference measurement machine for multi-component force and moment sensors of up to six components, a hexapod-structured calibration device was developed at the Physikalisch-Technische Bundesanstalt in 2001. The machine can generate and measure forces of up to 10 kN and moments of up to 1 kN · m. In this paper, the measurement uncertainty budget of the machine is analyzed, beginning with an improved physical model and calculation of sensitivity coefficients using the implicit function theorem and the Monte Carlo method. The main influencing factors for the measurement uncertainty are discussed and suggestions for further reduction of the uncertainty are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.